
Froskell programming language

Alexander Berntsen Stian Ellingsen Olle Fredriksson
alexander@plaimi.net stian@plaimi.net olle@plaimi.net

16th January 2015

Abstract

Due to the inherent complexity of computers and computer programs, bog-standard computer

users are destitute for knowledge. Learning how to program computer software is an enjoyable

and engaging way to teach users a concrete skill, and at the same time provide the necessary

foundations for further self-education towards computer erudition. However, the current tools

that are used in teaching have several problems, including bad error messages and being difficult

to install for non-technical users. We repent the present situation, and present the idea of an

implementation of the Haskell programming language with unlockable features as a solution. We

also offer musings on an interactive online IDE idea to get users quickly up and running with

our language.

Contents

1 The problem 1

2 Our idea 2

2.1 Language . 2

2.2 Integrated development environment . 2

2.3 Academic use . 3

2.4 Commercialisation . 3

2.5 Societal benefits . 3

2.6 Timetable . 4

3 Related work 4

3.1 Historical languages . 4

3.2 Helium . 5

3.3 Alice . 5

3.4 Mozart . 5

3.5 Racket . 5

3.6 Online interactive IDEs not necessarily aimed at teaching 5

4 Conclusions 6

1. The problem

When teaching programming languages, the

choice of language is important. Some teachers

opt for using languages tailor-made for teaching.

These generally fall into two categories: those

that are a simplified version of a general-purpose

language, and those that are completely new lan-

guages. One benefit of both language categories

is that their error messages can be better, for

instance by never containing references to ad-

vanced features that the student has not yet

1

mailto:alexander@plaimi.net
mailto:stian@plaimi.net
mailto:olle@plaimi.net

been taught. As an example, a Haskell student

that writes

x = abs −3

is met with a long error message that contains

the following snippets:

No instance f o r (Num a0) a r i s i n g from
a use of ’abs ’

The type va r i ab l e ’ a0 ’ i s ambiguous

and

No instance f o r (Num (a0 −> a0)) a r i s i n g
from a use of ’− ’

In the exp r e s s i on : abs − 3

The actual error is that the code is interpreted

as abs - 3, i.e. that the minus sign is taken as

subtraction of 3 from abs and not as negation.

However, the error message speaks of Num type-

class instances and type variables – concepts

that a beginner Haskell programmer is almost

guaranteed to not know.

When using a teaching language we can also

avoid “magic incantations”. As an example, take

the following Java program that prints “Hello

world!” to the console:

public class HelloWorld {
public stat ic void
main (St r ing [] a rgs) {

System . out . p r i n t l n (”He l lo world ! ”) ;
}

}

To teach what this program does the teacher

has to either tell the student to not worry about

the first three lines for now, probably leaving

the student in a puzzled state, or hold a long

lecture about concepts not entirely relevant to

a beginner.

Another difficulty in teaching programming

is that it is often complicated for students to

install the programming environment on their

own machines. This occurs for several reasons,

for instance because the language might have

bad or no support for certain operating systems,

or simply because the student does not yet have

enough computer experience. It can also be

difficult to provide consistent versions of the

language implementation and any required li-

braries. These difficulties lead to the teacher

having to provide what amounts to technical

support instead of being able to focus only on

programming.

2. Our idea

To mitigate the problems that beginner program-

mers often face, we want to make a programming

language implementation with unlockable lev-

els of features (subsection 2.1) and an online

integrated development environment (IDE) (sub-

section 2.2).

2.1. Language

We want to make an implementation of the

Haskell programming language [1] with unlock-

able sets of features. Haskell is a general-purpose

programming language suitable and often pre-

ferred for use as the first taught language in

computer science courses [2]. It is regarded as

an elegant programming language that allows

writing programs in many styles, including de-

notative and imperative.

With unlockable features we mean that a

student may start out with a language with very

few features turned on. As a result, we can pro-

vide very relevant error messages – tailored to

their level of expertise – that do not mention fea-

tures that they have not yet encountered. As the

teaching progresses, we can turn on increasingly

advanced features of the language. Since we are

using an already established, general-purpose

language, the knowledge gained using our imple-

mentation transfers to ordinary implementations

of Haskell and similar languages, and by having

unlockable features we avoid the problems as-

sociated with using a general-purpose language

for teaching.

2.2. Integrated development environ-
ment

To solve the problem of installation difficulties,

we propose to provide an online IDE for our

language. This means that a student can simply

point their web browser to a website providing

the IDE and whammy!, immediately start writ-

ing and running code in the browser; the barrier

2

to entry is extremely low. It also means that we

can provide the same up-to-date version of the

language and its libraries to everyone.

An online IDE opens the door to many fea-

tures that will help the students to learn or just

make programming exciting:

Collaborating Students can form groups and

collaboratively write code. Since the IDE

is online they can do this even if they are

not physically in the same location, and

they can edit the same file simultaneously.

Sharing Students can easily share their code

and applications with friends and class-

mates.

Writing games We can provide libraries to

write games that run in the browser, and

provide easy access to art assets in the

IDE. Games are fun and rewarding to hack,

which should help to increase the adoption

of the language. It also lets us focus de-

velopment, and sets us apart from other

educational programming languages.

Learning Teachers can provide learning mate-

rial with exercises that students can do

and have automatically marked directly in

the IDE. Language features (or even game

assets) can be unlocked as the students

progress through the exercises. It is pos-

sible to envision branching capabilities in

the exercise machinery, so that the user

could be prompted for what they would

like to learn next. Throw some learning

analytics at this baby, and we have in-

formed suggestions as to what to learn

next as well.

2.3. Academic use

We have already touched on a few uses of our

language and IDE in the academic sector, but

there are many more possibilities.

Our IDE could be specialised for program-

ming courses, with virtual classrooms where

students and tutors could meet to discuss the

course and its contents. Teachers could author

their own custom curricula and exercises, and

we could integrate the IDE with their learning

management system.

By providing different libraries and toggling

different sets of features of the language, it could

be customised to suit many diverse kinds of

courses at different levels in the education sys-

tem, be it programming fundamentals at the

university level or game development for kids.

It is likely that teachers would be very inter-

ested in grading systems, and integration with

learning management systems. Generated re-

ports would be useful for students and teachers

both.

We should try to get some schools or comput-

ing groups to use our environment as we develop

it, to get useful feedback. Our background in

academia will help us finding interested candi-

dates.

2.4. Commercialisation

We would like to keep the basic IDE gratis for

everyone, but we still have several ideas that

make the idea commercially viable:

Premium features The classroom features

could for instance be a premium feature

that schools and universities would have

to pay for.

Art assets Art assets for use in games and ap-

plications could be sold directly in the IDE.

Or, we could integrate with existing art as-

set services. Users should also be allowed

to upload their own art assets gratis.

Application store Advanced users could be

allowed to publish and sell their work in

an associated application store in return

for a portion of their revenue. Maybe they

could also sell “base games” that are in-

tended to be customised and tweaked into

full games, as a learning exercise. Teachers

could sell course material as well.

2.5. Societal benefits

Whilst user interface designers keep telling us

that user interface design is constantly improv-

ing, there is no denying the inherent complexity

3

of a modern day computer. In a society where

only software developers understand the basic

science of a computer program, unenlightened

computer users are left helpless. This is problem-

atic in the case of proprietary software, where

computer users are slaves to the subjugation of

the power elite created by these software devel-

opers – and worst of all, they often don’t even

realise it. Learning to program a computer will

as a side-effect make computer users more aware

of how computers actually work, which in turn

gives them the foundation for self-educating fur-

ther. Moreover, understanding the basics of

computer programming means understanding

what source code is, and why it must be free for

computer users themselves to be free. Illuminat-

ing users in this manner is close to the zenith

of societal contribution in computer science.

Another aspect to consider is that teaching

computer programming in a principled way is

The Right Thing. Computer programmers to-

day are typically either lone self-taught hackers,

or computer science students. Both of these

groups suffer setbacks from learning to program

through pedagogically unsound tools. Others

never make it to an enlightened state at all. So-

ciety at large is starting to take this seriously.

Computing at School1 has been successful in

improving national school curricula in the UK,

and in Norway we have Lær Kidsa Koding2. We

believe that our language could have a profound

impact in these circles.

2.6. Timetable

Having unlockable subsets of the language makes

it natural to develop the language iteratively.

We will design the first stage, the basic level

of the language, very meticulously, and merely

delineate future stages. Then, as development

goes on, we will continue this trend of meticu-

lousness for short-term goals, and nice academic

hand-waving of the future. It’s nice our degrees

weren’t for naught.

After around 15 months of work, we should

have all the complicated language design deci-

sions mostly out of the way (though subject

to change). A preliminary implementation of

the unlocking concept should be in place, and

the basic first level of the language, along with

some basic libraries, should all be available. We

should also have a third-party IDE connected

to our language, for proof-of-concept. Finally,

we should also have delineated some of the im-

mediate next levels.

3. Related work

In this section we look at some existing solutions

to the described problems, and why they are not

ideal. Let’s start with some of the most popular

historical languages.

3.1. Historical languages

BASIC was authored to provide a programming

language which would be easy to learn for stu-

dents without a rigorous mathematical back-

ground. It came about in the 1960s, designed

for use with Darthmouth’s timesharing system,

and became truly influential during the home

computer revolution of the 1970s. There have

been several versions of BASIC since the orig-

inal; the most notable dialect arguably being

Microsoft’s Visual Basic [3].

Pascal was designed in 1971, partly as a sim-

plified version of Algol, partly as a language that

encouraged structured programming. It was de-

signed for educational purposes, but evolved

into a popular general-purpose programming

language [4]. The initial versions were criticised

for not being suitable for ”real world” program-

ming [5]. Several versions and dialects of Pas-

cal have since emerged [4], that eliminate these

problems.

Scheme is a Lisp programming language that

was originally designed with tutorial purposes

in mind [6]. It was used in the influential book

Structure and Interpretation of Computer Pro-

grams, which was used at MIT to teach pro-

gramming. The success of the book and the

language itself later lead to Scheme becoming

1http://www.computingatschool.org.uk/
2http://www.kidsakoder.no/

4

http://www.computingatschool.org.uk/
http://www.kidsakoder.no/

a popular choice for introductory programming

courses at other universities too [7].

Logo is another Lisp programming language,

made specifically for teaching programming to

children. A notable part of several Logo en-

vironments is the use of a turtle avatar that

moves around the screen and draws things. It

is an influential language which has seen a lot

of adaptation since its inception [8].

Though we have much to learn from the lan-

guages mentioned here, none of them solve any

of the problems we have identified. Furthermore,

they are all antiquated.

3.2. Helium

Helium [9] is a dialect of Haskell specifically

made for teaching. It focusses on good error

messages. The implemented dialect is not full

Haskell since it does not include typeclasses.

The work on Helium might provide an inspira-

tion for how to implement good error messages,

but other than that our work will extend on its

functionality in several important ways. Helium

does not provide different levels of functionality,

and requires a local installation of full Haskell

before it can be installed.

3.3. Alice

Alice is a language and environment designed ex-

clusively to teach the concepts of object-oriented

programming. It’s a drag and drop environment

in which the user makes animations by plac-

ing 3D models and scripting their behaviour by

dragging and dropping control structures (loops,

if-statements, and so on) [10]. Alice has multi-

ple shortcomings, including being proprietary,

requiring a local install, only vaguely teach-

ing object-oriented concepts, not being even

remotely comparable to ”real world” coding,

having a thoroughly confusing user interface,

and so forth. Alice falls short on all of our

described problems.

3.4. Mozart

Mozart is an implementation of the Oz pro-

gramming language. It is featured in the MIT

textbook Concepts, Techniques, and Models of

Computer Programming. Mozart consists of

different subsets that are toggled as the user

progresses in their learning [11]. This is a core

concept in our language, so we should familiarise

ourselves with how Mozart works. Mozart does

not, however, offer an online IDE with exercises

etc. to make it easy to get started with. It more-

over appears to not have received widespread

usage.

3.5. Racket

Racket is another Lisp language. What’s cool

about Racket is that you may enable and disable

language features quite freely in the runtime sys-

tem. This lets you (amongst other things) make

what they call ”Teachpacks”, libraries written

in the full language that work with the currently

activated subset [12]. In theory you could make

a lot of what we are suggesting to do with our

language with Racket, though we would argue

that using a dynamic language that permits

side-effects is categorically The Wrong Thing.

Racket might in any event be the most relevant

work of all. We should study it closely!

Our idea is still a bit better though. We

have an online IDE, remember? What is more,

we can have nice exercises that guide the user

through the learning process in this IDE. And

our language doesn’t launch missiles by sheer

happenchance.

3.6. Online interactive IDEs not neces-
sarily aimed at teaching

There are several online interactive IDEs that we

can learn from. They are not aimed at teaching

and as such do not use informed and principled

pedagogic methods to teach users programming,

but rather act as supplementary resources when

learning programming, providing the users with

challenging tasks and often a game-ified envi-

ronment with e.g. achievements or points. In

this section we discuss a few of them.

http://www.codewars.com lets users train

on programming challenges, awarding points for

doing so. Users can also vote for the best solu-

5

http://www.codewars.com

tions to a task, and advanced users may author

problems themselves. The site supports sev-

eral programming languages, including Haskell,

Clojure, and Ruby. While not useful to learn

programming per se, the challenges can act as

neat supplements to someone who is learning to

program. The IDE lets the user hack solutions

in the browser (it includes emacs and vi input

modes), and also evaluate whether the solution

is correct via the browser. Several of the prob-

lems are well-authored with nice unit tests to

help the user understand the problem at hand,

and the IDE is mostly pleasant to use.

http://www.codingame.com/start offers

very visual game programming challenges. Once

again there’s an online IDE (with emacs and vi

input modes), unit tests to guide the user, and

in-browser verifying of the user’s solutions. The

site offers a huge selection of languages, includ-

ing Haskell, C, and Java. Interestingly the huge

selection of languages seems to be a negative,

in that they likely have a very limited API for

their challenges, leading to all languages feeling

slightly awkward in practice. The code you need

to write is furthermore often far detached from

”real world” code.

http://www.playmycode.com lets users

hack and play Ruby games, as well as share

them with others. While testing we encountered

bugs in the most popular games – although

the bugs could be related to the HTML ”game

player” rather than the games themselves, it’s

hard to tell. The IDE is severely handicapped

as it does not offer emacs or vi bindings, but is

at the very least functional. The site lets you

upload graphics, and offers an online graphics

editor as well. The latter would likely be avoided

by experienced artists, but is a good example of

the low barrier to entry mentality that we want.

http://elm-lang.org/try lets you hack

Elm code interactively. You may compile the

code and run it in the browser, and you can

even hot-swap code for a running program. The

Elm developers have been working on a time-

travelling debugger in which you may turn back

time in your running program, change the source,

and resume the program, seeing previous paths

being played out at the same time. It would

be natural to assume that this will be fea-

tured in the IDE sometime soon. Note that

this is just an online IDE. There is, however,

http://share-elm.com/ for sharing Elm code,

and http://elm-lang.org/Examples.elm has

a bunch of Elm examples which you may open

in the online IDE. Despite the Elm chaps being

clever enough to figure out time travel, they

don’t have emacs or vi bindings for their IDE.

Lacking this is of course the nadir of IDE de-

sign. We should learn from the great debugging

facilities offered by Elm’s IDE.

http://www.fpcomplete.com/page/

project-build offers an online IDE for Haskell

where you can make projects, compile them, and

run them. It also offers the use of libraries, and

the IDE features vi and emacs bindings. It is a

strong contender that shines with its low barrier

to entry. It is, rather unfortunately, proprietary,

and seems to be aimed at businesses rather than

education. Our language and IDE will have an

edge since their implementations will be free

and open-source, and will be more suitable for

teaching beginners, having unlockable language

features and good error messages.

4. Conclusions

People are beginning to realise that program-

ming is a fundamental skill in our increasingly

computerised society. Not just for software engi-

neers and computer scientists, but for everyone.

However, the present languages and tools used

to teach programming have several problems.

They often have error messages that may be

useful for advanced users, but utterly perplex

beginners with concepts that are beyond them

yet, and they suffer from having to write “magic

incantations”. The tools sometimes have little

or bad support on some platforms, creating a

barrier to entry for inexperienced students.

We propose to solve these issues by mak-

ing a programming language, based on Haskell,

for teaching, with unlockable levels of features.

This solves the first two described problems. To

make the barrier to entry as low as possible we

propose the engineering of an online IDE where

users may write and run code in the browser.

6

http://www.codingame.com/start
http://www.playmycode.com
http://elm-lang.org/try
http://share-elm.com/
http://elm-lang.org/Examples.elm
http://www.fpcomplete.com/page/project-build
http://www.fpcomplete.com/page/project-build

This IDE also opens up many other exciting pos-

sibilities, such as collaboration, sharing, virtual

classrooms with integrated exercises, and game

programming.

The existing tools we have analysed have

unfortunate shortcomings. Our solution on the

other hand is well cool.

References

[1] Simon Marlow et al. Haskell 2010 language

report. 2010.

[2] Edsger W. Dijkstra. To the members of the

Budget Council. 2001.

[3] Time. Fifty years of basic, the program-

ming language that made computers per-

sonal. 2014.

[4] Marco Cantu. Essential Pascal. CreateS-

pace, 2008.

[5] Brian W Kernighan. Why Pascal is not

my favorite programming language. Bell

Laboratories, 1981.

[6] Gerald Jay Sussman and Guy L Steele Jr.

Scheme: A interpreter for extended lambda

calculus. Higher-Order and Symbolic Com-

putation, 11(4):405–439, 1998.

[7] Matthias Felleisen, Robert Bruce Find-

ler, Matthew Flatt, and Shriram Krishna-

murthi. The structure and interpretation

of the computer science curriculum. Jour-

nal of Functional Programming, 14(04):365–

378, 2004.

[8] Logo Foundation. What is Logo?, 2011.

[9] Bastiaan Heeren, Daan Leijen, and Ar-

jan van IJzendoorn. Helium, for learning

haskell. In Proceedings of the ACM SIG-

PLAN Workshop on Haskell, Haskell 2003,

Uppsala, Sweden, August 28, 2003, pages

62–71. ACM, 2003.

[10] Carnegie Mellon University. What is Alice?,

2015.

[11] Peter Van-Roy and Seif Haridi. Concepts,

techniques, and models of computer pro-

gramming. MIT press, 2004.

[12] Matthew Flatt and PLT. The Racket Ref-

erence v.6.1.1, 2015.

7

	The problem
	Our idea
	Language
	Integrated development environment
	Academic use
	Commercialisation
	Societal benefits
	Timetable

	Related work
	Historical languages
	Helium
	Alice
	Mozart
	Racket
	Online interactive IDEs not necessarily aimed at teaching

	Conclusions

